skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vannucci, Marina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Covariate-dependent graph learning has gained increasing interest in the graphical modeling literature for the analysis of heterogeneous data. This task, however, poses challenges to modeling, computational efficiency, and interpretability. The parameter of interest can be naturally represented as a 3-dimensional array with elements that can be grouped according to 2 directions, corresponding to node level and covariate level, respectively. In this article, we propose a novel dual group spike-and-slab prior that enables multi-level selection at covariate-level and node-level, as well as individual (local) level sparsity. We introduce a nested strategy with specific choices to address distinct challenges posed by the various grouping directions. For posterior inference, we develop a full Gibbs sampler for all parameters, which mitigates the difficulties of parameter tuning often encountered in high-dimensional graphical models and facilitates routine implementation. Through simulation studies, we demonstrate that the proposed model outperforms existing methods in its accuracy of graph recovery. We show the practical utility of our model via an application to microbiome data where we seek to better understand the interactions among microbes as well as how these are affected by relevant covariates. 
    more » « less
  2. ABSTRACT In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the predictors, which are the features utilized in the outcome prediction model, and the subject-level covariates, which modulate the effects of the predictors on the outcome. We construct a varying coefficients modeling framework where we infer a network among the predictor variables and utilize this network information to encourage the selection of related predictors. We employ variable selection spike-and-slab priors that enable the selection of both network-linked predictor variables and covariates that modify the predictor effects. We demonstrate through simulation studies that our method outperforms existing alternative methods in terms of both feature selection and predictive accuracy. We illustrate VERGE with an application to characterizing the influence of gut microbiome features on obesity, where we identify a set of microbial taxa and their ecological dependence relations. We allow subject-level covariates, including sex and dietary intake variables to modify the coefficients of the microbiome predictors, providing additional insight into the interplay between these factors. 
    more » « less
  3. In this article, we develop an analytical approach for estimating brain connectivity networks that accounts for subject heterogeneity. More specifically, we consider a novel extension of a multi‐subject Bayesian vector autoregressive model that estimates group‐specific directed brain connectivity networks and accounts for the effects of covariates on the network edges. We adopt a flexible approach, allowing for (possibly) nonlinear effects of the covariates on edge strength via a novel Bayesian nonparametric prior that employs a weighted mixture of Gaussian processes. For posterior inference, we achieve computational scalability by implementing a variational Bayes scheme. Our approach enables simultaneous estimation of group‐specific networks and selection of relevant covariate effects. We show improved performance over competing two‐stage approaches on simulated data. We apply our method on resting‐state functional magnetic resonance imaging data from children with a history of traumatic brain injury (TBI) and healthy controls to estimate the effects of age and sex on the group‐level connectivities. Our results highlight differences in the distribution of parent nodes. They also suggest alteration in the relation of age, with peak edge strength in children with TBI, and differences in effective connectivity strength between males and females. 
    more » « less
  4. Abstract Stationary points embedded in the derivatives are often critical for a model to be interpretable and may be considered as key features of interest in many applications. We propose a semiparametric Bayesian model to efficiently infer the locations of stationary points of a nonparametric function, which also produces an estimate of the function. We use Gaussian processes as a flexible prior for the underlying function and impose derivative constraints to control the function's shape via conditioning. We develop an inferential strategy that intentionally restricts estimation to the case of at least one stationary point, bypassing possible mis-specifications in the number of stationary points and avoiding the varying dimension problem that often brings in computational complexity. We illustrate the proposed methods using simulations and then apply the method to the estimation of event-related potentials derived from electroencephalography (EEG) signals. We show how the proposed method automatically identifies characteristic components and their latencies at the individual level, which avoids the excessive averaging across subjects that is routinely done in the field to obtain smooth curves. By applying this approach to EEG data collected from younger and older adults during a speech perception task, we are able to demonstrate how the time course of speech perception processes changes with age. 
    more » « less
  5. Abstract Graphical models are powerful tools that are regularly used to investigate complex dependence structures in high-throughput biomedical datasets. They allow for holistic, systems-level view of the various biological processes, for intuitive and rigorous understanding and interpretations. In the context of large networks, Bayesian approaches are particularly suitable because it encourages sparsity of the graphs, incorporate prior information, and most importantly account for uncertainty in the graph structure. These features are particularly important in applications with limited sample size, including genomics and imaging studies. In this paper, we review several recently developed techniques for the analysis of large networks under non-standard settings, including but not limited to, multiple graphs for data observed from multiple related subgroups, graphical regression approaches used for the analysis of networks that change with covariates, and other complex sampling and structural settings. We also illustrate the practical utility of some of these methods using examples in cancer genomics and neuroimaging. 
    more » « less